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Efficient and accurate calculations of stability bounds in Hamiltonian systems
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The stability of motion in a typical Hamiltonian system with two degrees of freedom is described by the
corresponding fractal diagram and the corresponding critical function. We extend the method of modular
smoothing on the fractal diagram by showing that it possesses the same transformation properties as the critical
function. This enables one to calculate the fractal diagram at all points and the critical function knowing only
a few periodic orbits with the smallest periods.

PACS numbdps): 05.45+hb, 03.20-+i

[. INTRODUCTION periodic orbits is usually described by its residue, which is
defined by the following equation:
The problem of efficient and accurate calculations of frac-

tal diagrams and critical functions is important for a success- R(m/n;k)={2—TrLM(m/n;k)]}/4, ©)
ful description of transport in Hamiltonian systerfs. A
fractal diagram, denoted bl.(m/n), for a one-parameter
family of area-preserving twist maps of a cylinder com-
pletely describes the stability of rotational periodic orbits. It
is a complicated fractal function of rational frequencies of
the rotational periodic orbits. The critical function, denoted
by K(v), describes a relation between values of the paramR(m/n’kC(m/n)):l'

eter, at which invariant rotational tori are destroyed, and ir- Odr_blts W'tt?] |rrat||onalfftrﬁquen0|es tare qua5|per|qd|dc_. Dek;'t
rational frequencies of quasiperiodic orbits on such tori. It jsPending on the value of the parameter, a quasiperiodic orb
with frequency» can either fill an invariant circle in the

also a complicated fractal function. The main result pre- h . iant Cant bset of ircle. Th
sented in this paper, is that the knowledge of the fractaP'2S€ Space or an invarnant t.antor subset ot a circie. the

diagram at only a few of the shortest periodic orbits is suf.value of the critical functiork (v) at an irrational frequency
v is the smallest value of the paramekteait which there is no

ficient for an accurate estimate kf(m/n) andK(v) at any . ) . . .
value of the argument. Our result represents an extension afigvanant circle W|th.frequency/ [4]. K(») is defined to be.
qual to zero at rational values of the argument. There is a

application of the method of modular smoothing introduced®942 :
inp{)he referencef?] 9 relation, based on Greene conject{g¢ between the fractal

The most studied example of area-preserving twist mapgiagram and the critical function. It is given by the following

where M(m/n;k) is a product of Jacobian matrices of the
map at alln—1 distinct points of the periodic orbit. A peri-
odic orbit is elliptic if 0O<R(m/n;k)<1 and reflection hy-
perbolic if R(m/n;k)>1. Thus, the fractal diagram for the
standard map can be defined by the following condition:

is the Taylor-Chirikov standard ma@M), given by the fol- eduation:
lowing equations: lim k(m/n)=K(), @)
m; /nj—v
k
Pi+1=pit ESW‘( 2m6;), (1) wherem, /n; is the sequence of successive continued fraction

convergents to the irrational.
The main problem with most of the existing techniques
0i+1=0i+Pi+1, ) for calculations of the fractal diagram and the critical func-
tion is the local character. The computations have to be done
wherek is a parameter. Our results will be illustrated usingfor each relevant frequency again and independently from
this system. Furthermore, the fractal diagram and the criticathe calculations for other frequencies. For example, the cal-
function are defined using only rotational orbits, that is, theculations of the fractal diagram require first the calculations
orbits that go around the cylinder, so we shall be concernedf the periodic orbits, and then their residues. Each periodic
only with such orbits. orbit has to be calculated separately and with no use of the
The fractal diagram of the SM is defined as folloj/@&. knowledge about other distant orbits. The calculations of pe-
The standard map has a stable elliptic periodic orbit for anyiodic orbits are usually based on some form of the Newton
value of the rational frequencsn/n and for a sufficiently method and are relatively easy only in the case of the orbits
small value of the paramet&r At some value of the param- with small period{6]. The calculations of long periodic or-
eter, which depends on the frequermain, the elliptic orbit  bits close to the bifurcation points are quite time consuming
bifurcates into an unstable reflection-hyperbolic orbit. Theand require special techniques to determine the good initial
critical value of the parameter, at which the bifurcation oc-guess for the Newton methdd]. For example, although
curs, as a function of the rational frequency is the fractarenormalization-group methods have produced some strong
diagramk.(m/n). It is illustrated in Fig. 1. The stability of results, they are still local, and difficult to apply on realistic
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FIG. 1. Fractal diagram for the standard map. FIG. 2. The functiorl,(m/n) for the standard map.

systemg8,9]. However, a few years ago a method of modu-seems to be continuously differentiable, and so on. Further-
lar smoothing for an efficient and relatively accurate calcumgre, values of the functionk; ,i>0 at rationals can be
lation of fractal objects in Hamiltonian mechanics has beemsa|culated using perturbation expansion of a finite order. For
reported[2]. The method is based on the transformationexample, for,(m/n) we need perturbation expansion of the
properties of these objects under the action of the unimodulasiger n. A smooth interpolationL,, through only a few
group on the frequencies. It has been applied on the criticgoints L,(m/n) then allows one to reconstruct the original
functions directly and on the KAM tori. The purpose of this fractal function with a bounded maximal error of just a few
paper is to show that the method can be applied on the fract@lercent.

diagrams. The main practical result is that a knowledge of The method of modular smoothing enables one to ap-
ke(m/n) for just a fewm/n with low n is sufficient for  proximate a discontinuous fractal functigif») by a smooth
relatively accurate computation of all the fractal diagram ancnction, for example_,,. It would be useful to be able to
thus the critical function in the relevant problem, with almost g the same also with the fractal diagram, which is a func-

no additional computations. tion of a similar complexity as the critical function. To this
end we examined transformation properties of the fractal dia-

Il. MODULAR SMOOTHING OF THE FRACTAL gramk.(m/n) under the action of the generators of the uni-
DIAGRAM modular group. By analogy with the situation in the case of

Pe critical function we expect to be able to express these

. . . t
Detailed ana_lyses of a perturbaﬂon expansion shows th?t‘ransformation properties via continuous and smooth func-
the transformation properties of, for exampigv), can be tions. Notice that the asymptotic relatio) between

described by a sequence of successively smoother functions 4
L;(») of the critical function and its transformations, with Ke(m/n) andK() does not imply thake(m/n) must have

Lo(»)=InK(»). The method is based on the cancellation ofthe same properties §(»). However, guided by the defi-

) L : nition of the functionL ;, and the asymptotic relatidd), we
the smgularltle_s irL;(v) andL(Mv), whereM is an ele- defined, and calculated numerically, a new function
ment of the unimodular group

[1(m/n) as follows:
_avtb
~cv+d’

©)

Mv m
Il(m/n)zlo(m/n)—Flo(n/m), (8

with a,b,c, andd integers satisfyingad—bc|=1.
The functionL, has infinite singularities at all rationals, _
but the functionL,; defined for the standard map by the for- wherelo=Inky(mn).

mula The functionl,;(m/n) is presented in Fig. 2. It is obvi-

ously a continuous function, and can be extended by conti-
L —L —la(p L 6 nuity onto the |rrat|or_1al_freque_n0|es. This is our main result.
1(1)=Lo(»)=rLo(v) © Remarkably,|; coincides with the functiorL,, defined

is continuous everywhere and boundﬁ*cept at zero and via the critical functionK(V). HOWeVer, we shall keep dif-
infinity). Notice that the critical function of the standard map ferent notation in order to distinguish betwee(m/n),

is invariant under integer translations of the frequency, savhich is defined via periodic orbits and the fractal diagram,
thatLo(v)=Lo(v—{»}) for any ve R. Here{r} means the andL(v), which is defined via the quasiperiodic orbits and
integer part ofy. The fractal diagrank.(m/n) is also invari-  the critical function. Also, we shall usk;(m/n) to denote

ant under integer translations of the rational argun‘m_ the values of the functiohl at rationals that are calculated
The function by the perturbation expansion. The transformation properties

of I, under the generators of the unimodular group are the
Lo(v)=(v+21)Ly(v+1)—wvLq(v) (7) same as fok 1, and are given by the following relations:
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FIG. 3. The functionl,(m/n) for the standard map.
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FIG. 5. The figure gives the rati&.,(m/n)/k,(m/n) for a
sample set of all rationals with up to first five continued fraction
coefficients ranging from 1 to 5.

merical method that we used for the calculations of
k.(m/n), and point out the main problems in its application.
The calculations ok.(m/n) are based on the calculations
of the corresponding periodic orbits and checking if the orbit
is subcritical [R(m/n;k)<1] or supercritical [R(m/
n;k)>1]. The only problem here is the calculation of long
periodic orbits close to the bifurcation point. The periodic

The first two relations are simple consequences of the defRrits are extremal points of an action functiofis). For the
nition (8), but the third one contains a newly defined functioncalculation of the periodic orbits we used a stable method,

[,(v), which describes the transformation of the functign
under the unit translation.

The functionl,(m/n), obtained from numerical calcula-
tions of k.(m/n),k;(m/n+1) and k,n/(m+n)] is pre-
sented in Fig. 3. We expect the functibnto be continuously
differentiable, but there are regions in the numerigalno-

based on the Greene-function approach, for solving differ-
ence equations, which come as the equations of the Newton
method for finding zero of the action functional. The method
was developed by Cheng, Menstel, and Perc[vd] and
there is a numerical package availapl®]. As pointed out

by the authors, and is always the case with a Newton

tably around 1/5, that raise doubts about such conclusion. Ofi€thod, success of the algorithm depends crucially on a

the other hand, these are the regions where the relative err§

in the numerical computations &f(m/n) is largest, and the
most evident in the values df. In order to study these

pod initial guess for the orbiong near critical orbits are
best approached by supercritical orhit®n the other hand,
an unstablem/n orbit with a large period is close to an

regions more carefully we shall first briefly describe the nu-M'/n’~m/n orbit with a short period that might be stable. In
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FIG. 4. The figure illustrates the significance of numerical errors  FIG. 6. The figure illustrates the ratiq.(m/n)/k,(m/n) for a

in the calculations ok (m/n) for the properties of numerically
calculatedl;(m/n). Pointsl([0,a;,a,]) are denoted by dots and
the pointsl,([0,a;,a,,a3]),a3>1 are denoted by crosses.

sequence of rationale/n={0,3,a,},a,=2,3, . . . ,20approaching
m/n=1/3, vs the coefficienh,. The figure strongly indicates that
the errors in our approximate,, are bounded.
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the numerical calculations it is very difficult to distinguish trate the general behavior of the approximation. Let us point
the two orbits. Thus it is likely that the absolute value of out that the calculations dk.,(m/n) at all points in the

R(m/n;k) might be underestimated, leading to a larger valuefigure, using the reconstruction algorithm, take only a couple
of the numericalk;(m/n) than the correct one. This gives of seconds. In Fig. 6 we give the ratio on a sequence of
systematically larger values of the numerida{m/n) as rationals m/n={0,3,a,},a,=2,3,...,20, approaching a

well. This type of error can be illustrated also for the func-typical low-order resonance, namely, the resonance at 1/3, in
tion I,(m/n), with a special choice of the rational¥n. For  order to demonstrate that errors are bounded. The figures

example, the numericdh(m/n) on the numbersn/n with illustrate that the errors are indeed quite small and bounded.
the continued fraction expansion of a form0,a,
a,,a3],a3>1, in an interval around 4/5, is illustrated in Fig. IV. SUMMARY

4. It is quite different from the one illustrated in Fig. 2. This
is obviously due to the numerical errors in the calculations Ofth
k.(m; /n;) on such rationals. The error is the most significantte
in the calculations ok.(m/n) for anm/n orbit that is close
to m’/n"=n/m—{n/m} orbit, with k.(m/n) considerably
smaller thenk.(m’/n"). In conclusion, based on analytical
reason$2], numerical calculations for other systefiz3, and
parts ofl , where it looks smooth, we believe that it is indeed
a smooth function for all values of the argument.

We shall now outline the procedure for the calculations of
e boundaries of stability in a two degrees of freedom sys-
m, based on results reported in this paper. First, the system
has to be reduced to a one-parameter family of systems with
one and a half degrees of freedom. Then, one has to obtain
the values ok.(m/n) for just a few of the shortest periodic
orbits. Calculations of such orbits do not represent serious
problems in any of the existing techniques. The few points
k.(m/n) are used to calculate a few values of one of the
I;,i>0 functions. The valuelk(m/n) serve as a skeleton for

l. TEST OF THE METHOD a smooth approximatioh;,( »), which is than used to recon-

We have tested the method using the standard map and &fuct the approximate fractal diagram(m/n) and the ap-
approximation of the functior.,, which was published in Proximate critical functiork(v). _
the second part of Ref2]. The approximatiori,, was ob- The functlons_Li(V) will be d_n‘ferent for different sys-
tained, as described if2], by interpolating through only a t€ms, bgt we believe that the existence of th_ese functions and
few pointsL,(m/n) with smalln. The algorithm for recon- the outlined proc_edur_e are general for a wide class of non-
structing the approximate fractal diagram from the approxi-d€generate Hamiltonian systems with two degrees of free-
mateL,, function is quite analogous to the algorithm, de- dom. Obwougly_, the procedure has to be applied and tested
scribed in[2], for reconstructing the approximate critical ©N Some realistic systems. _ , .
function from the samé.,. In the case of the critical func-  1he main practical use of our results is that, in realistic
tion, defined on the irrationals, the approximatiég() at systems, it might be easier to use numerical computation of
any noblev is related toK(y),y=1{0,1,1 ...} by a finite just a few _short periodic orbits, in order to calculate the
number of inversions and integer translations, ugipg. In  corresponding values di(m/n), than to perform the low-
the case of the fractal diagram the approximatige(m/n) orc_ier perturbation expansion, which is needed for the calcu—
at any m/n is related tok,(1)=4 by a finite number of lations ofL;(m/n) at these points. It shpuld even be possible
inversions and integer translations, using the same The to ?pp'y th? met_hod_ to the d_ata obtained directly f“’”.‘ ex-
algorithm was describe if2], so we shall not duplicate the periments, in which it is pc_)ss!ble to detect the change in the
description here. The ratios.,(m/n)/k.(m/n) of the ap- stability of a few short periodic orbits.
proximate fractal diagrank.,(m/n), obtained using its
transformation properties approximated by,, versus nu-
merically calculatek.(m/n) are presented in Figs. 5 and 6.  We would like to thank B. Mestel, I.C. Percival, and F.
In Fig. 5 the set of frequencies/n is chosen so as to illus- Vivaldi for helpful communications.
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