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The stability of motion in a typical Hamiltonian system with two degrees of freedom is described by the
corresponding fractal diagram and the corresponding critical function. We extend the method of modular
smoothing on the fractal diagram by showing that it possesses the same transformation properties as the critical
function. This enables one to calculate the fractal diagram at all points and the critical function knowing only
a few periodic orbits with the smallest periods.

PACS number~s!: 05.45.1b, 03.20.1i

I. INTRODUCTION

The problem of efficient and accurate calculations of frac-
tal diagrams and critical functions is important for a success-
ful description of transport in Hamiltonian systems@1#. A
fractal diagram, denoted bykc(m/n), for a one-parameter
family of area-preserving twist maps of a cylinder com-
pletely describes the stability of rotational periodic orbits. It
is a complicated fractal function of rational frequencies of
the rotational periodic orbits. The critical function, denoted
by K(n), describes a relation between values of the param-
eter, at which invariant rotational tori are destroyed, and ir-
rational frequencies of quasiperiodic orbits on such tori. It is
also a complicated fractal function. The main result pre-
sented in this paper, is that the knowledge of the fractal
diagram at only a few of the shortest periodic orbits is suf-
ficient for an accurate estimate ofkc(m/n) andK(n) at any
value of the argument. Our result represents an extension and
application of the method of modular smoothing introduced
in the references@2#.

The most studied example of area-preserving twist maps
is the Taylor-Chirikov standard map~SM!, given by the fol-
lowing equations:
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wherek is a parameter. Our results will be illustrated using
this system. Furthermore, the fractal diagram and the critical
function are defined using only rotational orbits, that is, the
orbits that go around the cylinder, so we shall be concerned
only with such orbits.

The fractal diagram of the SM is defined as follows@3#.
The standard map has a stable elliptic periodic orbit for any
value of the rational frequencym/n and for a sufficiently
small value of the parameterk. At some value of the param-
eter, which depends on the frequencym/n, the elliptic orbit
bifurcates into an unstable reflection-hyperbolic orbit. The
critical value of the parameter, at which the bifurcation oc-
curs, as a function of the rational frequency is the fractal
diagramkc(m/n). It is illustrated in Fig. 1. The stability of

periodic orbits is usually described by its residue, which is
defined by the following equation:

R~m/n;k!5$22Tr@M ~m/n;k!#%/4, ~3!

whereM (m/n;k) is a product of Jacobian matrices of the
map at alln21 distinct points of the periodic orbit. A peri-
odic orbit is elliptic if 0,R(m/n;k),1 and reflection hy-
perbolic if R(m/n;k).1. Thus, the fractal diagram for the
standard map can be defined by the following condition:
R(m/n,kc(m/n))51.

Orbits with irrational frequencies are quasiperiodic. De-
pending on the value of the parameter, a quasiperiodic orbit
with frequencyn can either fill an invariant circle in the
phase space or an invariant Cantor subset of a circle. The
value of the critical functionK(n) at an irrational frequency
n is the smallest value of the parameterk at which there is no
invariant circle with frequencyn @4#. K(n) is defined to be
equal to zero at rational values of the argument. There is a
relation, based on Greene conjecture@5#, between the fractal
diagram and the critical function. It is given by the following
equation:

lim
mi /ni→n

kc~m/n!5K~n!, ~4!

wheremi /ni is the sequence of successive continued fraction
convergents to the irrationaln.

The main problem with most of the existing techniques
for calculations of the fractal diagram and the critical func-
tion is the local character. The computations have to be done
for each relevant frequency again and independently from
the calculations for other frequencies. For example, the cal-
culations of the fractal diagram require first the calculations
of the periodic orbits, and then their residues. Each periodic
orbit has to be calculated separately and with no use of the
knowledge about other distant orbits. The calculations of pe-
riodic orbits are usually based on some form of the Newton
method and are relatively easy only in the case of the orbits
with small periods@6#. The calculations of long periodic or-
bits close to the bifurcation points are quite time consuming
and require special techniques to determine the good initial
guess for the Newton method@7#. For example, although
renormalization-group methods have produced some strong
results, they are still local, and difficult to apply on realistic
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systems@8,9#. However, a few years ago a method of modu-
lar smoothing for an efficient and relatively accurate calcu-
lation of fractal objects in Hamiltonian mechanics has been
reported @2#. The method is based on the transformation
properties of these objects under the action of the unimodular
group on the frequencies. It has been applied on the critical
functions directly and on the KAM tori. The purpose of this
paper is to show that the method can be applied on the fractal
diagrams. The main practical result is that a knowledge of
kc(m/n) for just a fewm/n with low n is sufficient for
relatively accurate computation of all the fractal diagram and
thus the critical function in the relevant problem, with almost
no additional computations.

II. MODULAR SMOOTHING OF THE FRACTAL
DIAGRAM

Detailed analyses of a perturbation expansion shows that
the transformation properties of, for example,K(n), can be
described by a sequence of successively smoother functions
Li(n) of the critical function and its transformations, with
L0(n)5 lnK(n). The method is based on the cancellation of
the singularities inLi(n) andLi(Mn), whereM is an ele-
ment of the unimodular group

Mn5
an1b

cn1d
, ~5!

with a,b,c, andd integers satisfyinguad2bcu51.
The functionL0 has infinite singularities at all rationals,

but the functionL1 defined for the standard map by the for-
mula

L1~n!5L0~n!2nL0~n21! ~6!

is continuous everywhere and bounded~except at zero and
infinity!. Notice that the critical function of the standard map
is invariant under integer translations of the frequency, so
that L0(n)5L0(n2$n%) for any nPR. Here$n% means the
integer part ofn. The fractal diagramkc(m/n) is also invari-
ant under integer translations of the rational argumentm/n.

The function

L2~n!5~n11!L1~n11!2nL1~n! ~7!

seems to be continuously differentiable, and so on. Further-
more, values of the functionsLi ,i.0 at rationals can be
calculated using perturbation expansion of a finite order. For
example, forL1(m/n) we need perturbation expansion of the
order n. A smooth interpolationL1a through only a few
points L1(m/n) then allows one to reconstruct the original
fractal function with a bounded maximal error of just a few
percent.

The method of modular smoothing enables one to ap-
proximate a discontinuous fractal functionK(n) by a smooth
function, for exampleL1a . It would be useful to be able to
do the same also with the fractal diagram, which is a func-
tion of a similar complexity as the critical function. To this
end we examined transformation properties of the fractal dia-
gramkc(m/n) under the action of the generators of the uni-
modular group. By analogy with the situation in the case of
the critical function we expect to be able to express these
transformation properties via continuous and smooth func-
tions. Notice that the asymptotic relation~4! between
kc(m/n) andK(n) does not imply thatkc(m/n) must have
the same properties asK(n). However, guided by the defi-
nition of the functionL1 , and the asymptotic relation~4!, we
defined, and calculated numerically, a new function
l 1(m/n) as follows:

l 1~m/n!5 l 0~m/n!2
m

n
l 0~n/m!, ~8!

wherel 05 lnkc(m/n).
The function l 1(m/n) is presented in Fig. 2. It is obvi-

ously a continuous function, and can be extended by conti-
nuity onto the irrational frequencies. This is our main result.

Remarkably,l 1 coincides with the functionL1 , defined
via the critical functionK(n). However, we shall keep dif-
ferent notation in order to distinguish betweenl 1(m/n),
which is defined via periodic orbits and the fractal diagram,
andL1(n), which is defined via the quasiperiodic orbits and
the critical function. Also, we shall useL1(m/n) to denote
the values of the functionL1 at rationals that are calculated
by the perturbation expansion. The transformation properties
of l 1 under the generators of the unimodular group are the
same as forL1 , and are given by the following relations:

FIG. 1. Fractal diagram for the standard map. FIG. 2. The functionl 1(m/n) for the standard map.
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l 1~1/n!52u1/nu l 1~n!, ~9!

l 1~2n!5 l 1~n!, ~10!

and

l 1~n11!5
l 2~n!1n l 1~n!

n11
. ~11!

The first two relations are simple consequences of the defi-
nition ~8!, but the third one contains a newly defined function
l 2(n), which describes the transformation of the functionl 1
under the unit translation.

The functionl 2(m/n), obtained from numerical calcula-
tions of kc(m/n),kc(m/n11) and kc@n/(m1n)# is pre-
sented in Fig. 3. We expect the functionl 2 to be continuously
differentiable, but there are regions in the numericall 2 , no-
tably around 1/5, that raise doubts about such conclusion. On
the other hand, these are the regions where the relative error
in the numerical computations ofkc(m/n) is largest, and the
most evident in the values ofl 2 . In order to study these
regions more carefully we shall first briefly describe the nu-

merical method that we used for the calculations of
kc(m/n), and point out the main problems in its application.

The calculations ofkc(m/n) are based on the calculations
of the corresponding periodic orbits and checking if the orbit
is subcritical @R(m/n;k),1# or supercritical @R(m/
n;k).1#. The only problem here is the calculation of long
periodic orbits close to the bifurcation point. The periodic
orbits are extremal points of an action functional@1#. For the
calculation of the periodic orbits we used a stable method,
based on the Greene-function approach, for solving differ-
ence equations, which come as the equations of the Newton
method for finding zero of the action functional. The method
was developed by Cheng, Menstel, and Percival@7#, and
there is a numerical package available@10#. As pointed out
by the authors, and is always the case with a Newton
method, success of the algorithm depends crucially on a
good initial guess for the orbit~long near critical orbits are
best approached by supercritical orbits!. On the other hand,
an unstablem/n orbit with a large period is close to an
m8/n8'm/n orbit with a short period that might be stable. In

FIG. 4. The figure illustrates the significance of numerical errors
in the calculations ofkc(m/n) for the properties of numerically
calculatedl 1(m/n). Points l 1(@0,a1 ,a2#) are denoted by dots and
the pointsl 1(@0,a1 ,a2 ,a3#),a3@1 are denoted by crosses.

FIG. 5. The figure gives the ratiokca(m/n)/kc(m/n) for a
sample set of all rationals with up to first five continued fraction
coefficients ranging from 1 to 5.

FIG. 6. The figure illustrates the ratiokca(m/n)/kc(m/n) for a
sequence of rationalsm/n5$0,3,a2%,a252,3, . . . ,20approaching
m/n51/3, vs the coefficienta2 . The figure strongly indicates that
the errors in our approximatekca are bounded.

FIG. 3. The functionl 2(m/n) for the standard map.
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the numerical calculations it is very difficult to distinguish
the two orbits. Thus it is likely that the absolute value of
R(m/n;k) might be underestimated, leading to a larger value
of the numericalkc(m/n) than the correct one. This gives
systematically larger values of the numericall 2(m/n) as
well. This type of error can be illustrated also for the func-
tion l 1(m/n), with a special choice of the rationalsm/n. For
example, the numericall 1(m/n) on the numbersm/n with
the continued fraction expansion of a form@0,a1 ,
a2 ,a3#,a3@1, in an interval around 4/5, is illustrated in Fig.
4. It is quite different from the one illustrated in Fig. 2. This
is obviously due to the numerical errors in the calculations of
kc(mi /ni) on such rationals. The error is the most significant
in the calculations ofkc(m/n) for anm/n orbit that is close
to m8/n85n/m2$n/m% orbit, with kc(m/n) considerably
smaller thenkc(m8/n8). In conclusion, based on analytical
reasons@2#, numerical calculations for other systems@2#, and
parts ofl 2 where it looks smooth, we believe that it is indeed
a smooth function for all values of the argument.

III. TEST OF THE METHOD

We have tested the method using the standard map and an
approximation of the functionL2 , which was published in
the second part of Ref.@2#. The approximationL2a was ob-
tained, as described in@2#, by interpolating through only a
few pointsL2(m/n) with small n. The algorithm for recon-
structing the approximate fractal diagram from the approxi-
mateL2a function is quite analogous to the algorithm, de-
scribed in @2#, for reconstructing the approximate critical
function from the sameL2a . In the case of the critical func-
tion, defined on the irrationals, the approximationKa(n) at
any noblen is related toK(g),g5$0,1,1, . . . % by a finite
number of inversions and integer translations, usingL2a . In
the case of the fractal diagram the approximationkca(m/n)
at anym/n is related tokc(1)54 by a finite number of
inversions and integer translations, using the sameL2a . The
algorithm was describe in@2#, so we shall not duplicate the
description here. The ratioskca(m/n)/kc(m/n) of the ap-
proximate fractal diagramkca(m/n), obtained using its
transformation properties approximated byL2a , versus nu-
merically calculatedkc(m/n) are presented in Figs. 5 and 6.
In Fig. 5 the set of frequenciesm/n is chosen so as to illus-

trate the general behavior of the approximation. Let us point
out that the calculations ofkca(m/n) at all points in the
figure, using the reconstruction algorithm, take only a couple
of seconds. In Fig. 6 we give the ratio on a sequence of
rationals m/n5$0,3,a2%,a252,3, . . .,20, approaching a
typical low-order resonance, namely, the resonance at 1/3, in
order to demonstrate that errors are bounded. The figures
illustrate that the errors are indeed quite small and bounded.

IV. SUMMARY

We shall now outline the procedure for the calculations of
the boundaries of stability in a two degrees of freedom sys-
tem, based on results reported in this paper. First, the system
has to be reduced to a one-parameter family of systems with
one and a half degrees of freedom. Then, one has to obtain
the values ofkc(m/n) for just a few of the shortest periodic
orbits. Calculations of such orbits do not represent serious
problems in any of the existing techniques. The few points
kc(m/n) are used to calculate a few values of one of the
l i ,i.0 functions. The valuesl i(m/n) serve as a skeleton for
a smooth approximationLia(n), which is than used to recon-
struct the approximate fractal diagramkc(m/n) and the ap-
proximate critical functionK(n).

The functionsLi(n) will be different for different sys-
tems, but we believe that the existence of these functions and
the outlined procedure are general for a wide class of non-
degenerate Hamiltonian systems with two degrees of free-
dom. Obviously, the procedure has to be applied and tested
on some realistic systems.

The main practical use of our results is that, in realistic
systems, it might be easier to use numerical computation of
just a few short periodic orbits, in order to calculate the
corresponding values ofl 1(m/n), than to perform the low-
order perturbation expansion, which is needed for the calcu-
lations ofL1(m/n) at these points. It should even be possible
to apply the method to the data obtained directly from ex-
periments, in which it is possible to detect the change in the
stability of a few short periodic orbits.
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